Related Publications

Since the chalcogenide glasses transmit to longer wavelengths in the IR than silica and fluoride glasses, there are numerous potential applications in the civil, medical and military areas.

The list below is a continuously updated list of papers mentioning IRflex's products and/or written by us. The references are sorted by year of publishing and journal/book name. These distinguished research works, which have become permanent record of many important developments in the field, helping optical scientists and optical engineers stay abreast in their research field.  If you wish, your publication shall be included here, please send us an email to info@irflex.com containing the appropriate citation. Gain additional publicity with us!

Note: The following list contains articles mentioning explicitly IRflex or at least one of our product's name. Most of the reference can be found easily by full-text searches. However, some papers cite us only indirectly, sometimes not at all. Such publications are included only if the use of a IRflex's product is known, or based on communication with the author(s). There are certainly many more articles reporting results obtained using IRflex's fibers and devices. Unfortunately, such papers are often unknown by us. Please help us complete the list.

Thank you very much in advance.

Chalcogenide Molded Freeform Optics for Mid-infrared Lasers by Francois Chenard, Oseas Alvarez, IRflex Corporation (United States); Allen Y. Yi, The Ohio State Univ. (United States).  Abstract of Paper 10181-27 at SPIE Defense+Commercial Sensing 2017 Conference

Mid-infrared Imaging Fiber Bundle by Francois Chenard, Oseas Alvarez, IRflex Corporation (United States); Dan Gibson, Brandon L. Shaw, Jas Sanghera, U.S. Naval Research Laboratory (United States).  Abstract of Paper 10181-29 at SPIE Defense+Commercial Sensing 2017 Conference

Optical fiber pumping 2.0 - 5.5 spectrum flat type mid-infrared supercontinuum light source by Ke Yin, Wu Zhang,  Zhen Cai, Guangshen Liu and Jin Hou, published by Chinese Journal of Lasers, Vol. 43, No. 12 December 2016.  IRflex's IRF-S series singlemode chalcogenide glass fiber was successfully used in the experiment.

Broadband mid-infrared supercontinuum generation in 1-meter-long As2S3-based fiber with ultra-large core diameter by Peiqing Zhang, Peilong Yang, Xunsi Wang, Rongping Wang, Shixun Dai, and Qiuhua Nie. Published 30 Nov 2016, OSA Publishing, Optics Express, Volume 24, Issue 25, Page 28400.  IRflex's IRF-S-200 chalcogenide glass fiber was used in the experiment.

Mid-infrared Ultra-high-Q Resonators based on fluoride crystalline materials by C. Lecaplain, C. Javerzac-Galy, M.L. Gorodetsky & T.J. Kippenberg, published November 21, 2016 by Nature Communications. IRflex's IRF-S-9  chalcogenide (ChG) tapered fiber has been successfully used in the experiment.

Mode Coupling in Chalcogenide Negative Curvature Fibers  by Chengli Wei, Robinson A. Kuis, Francois Chenard, Curtis R. Menyuk, and Jonathan Hu, presented as conference papers at CLEO2016, published by OSA Publishing (JTu5A.93), the chalcogenide class fiber used are IRflex’s chalcogenide glass fibers.

Hybridized Fabrication of Robust Low-Loss Multimaterial Chalcogenide Fiber for Infrared Applications by Soroush Shabahang, Felix Tan, Joshua Perlstein, Guangming Tao, Mohammed Algarni, Yuanli Bai, Oseas Alvarez, Gene Tsvid, Chandra Kumar N. Patel, Francois Chenard, Kenneth L. Schepler, and Ayman Abouraddy.  Presented as conference paper at CLEO2016, published by OSA Publishing (JF1K.3), The chalcogenide glass based cane was manufactured by IRflex Corporation.

Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development by Rajesh Thapa, Rafael R. Gattass, Vinh Nguyen, Geoff Chin, Dan Gibson, Woohong Kim, L. Brandon Shaw, and Jasbinder S. Sanghera. OSA Publishing, Vol. 40, No. 21/November 1 2015/Optics Letters.  IRflex's IRF-S-6.5 mid-IR fiber was used in the experiment.

Infrared fibers by Guangming Tao, Heike Ebendorff-Heidepriem, Alexander M. Stolyarov, Sylvain Danto, John V. Badding, Yoel Fink, John Ballato and Ayman F. Abouraddy.  OSA Publishing/Advances in Optics and Photonics Vol.7, Issue 2, pp. 379-458 (2015), doi:10.1364/AOP.7.000379

High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiberby Stefan Kedenburg, Tobias Steinle, Florian Morz, Andy Steinmann, and Harald Giessen, Published 1 June 2015, Optics Letter (Doc. ID236877).  IRflex's IRF-S-7 and IRF-S-9 fibers have been successfully used in the experiment.

Quantum cascade laser Kerr frequency comb generation by Caroline Lecaplain, Clément Javerzac-Galy, Erwan Lucas, John D. Jost, and tobias kippenberg, CLEO2015, ISBN:978-1-55752-968-8.  IRflex's IRF-S-10 fiber has been successfully used in the research.

MIR Chalcogenide Fiber and Devices by Francois Chenard, Oseas Alvarez, and Hassan Moawad, Proc SPIE 9317 at Photonics West 2015

Chalcogenide negative curvature hollow-core photonic crystal fibers with low loss and low power ratio in the glass by Chengli Wei, Robinson Kuis, Francois Chenard, and Jonathan Hu, CLEO_SI.2014.SM1N.5

Mid-Infrared Single-Photon Detection with Tungsten Silicide Superconducting Nanowires by F.Marsili, V.B Verma, M.J.Stevens, J.A.Stern, M.D.Shaw, A.J. Miller, D. Schwarzer, A. Wodtke, R.P.Mirin, and S.W.Nam CLEO_SI.2013.CTu1H.1, IRflex's IRF-S-100 fiber was used in the experiment.

Progress on Mid IR Chalcogenide Fiber and Devices by F Chenard, OSA SOF SW3F, 2012

U.S. Manufacture of IR Fibers by F Chenard, OSA SOF SOMC2 June 2011

Chalcogenide fiber for mid-infrared transmission and generation of laser source by F Chenard, R. Kuis, SPIE Vol. 7693-08, 2010

Downloads

MIR Chalcogenide Fiber and Devices, Published at SPIE PW2015 pdf icon for download